

Ultrasound technology in food processing and preservation

Hao Feng University of Illinois at Urbana-Champaign

1st International Congress on Food Technology November 3-6, 2010 Antalya, Turkey

1

Mechanical waves (20 - 100 kHz) traveling in a liquid

I Ultrasonic Field

B. Piston source: can be treated as a plane wave in the "far-field" region

Onnas	bean	•

a	↔ ↔	When $a >> \lambda$ and $x > a^2/\lambda$ (far-field), within the Beam, the accustic pressure can be approximated
	↔ ↔	by $x(t)$ and $p(x,t)$

C. Spherical ultrasonic waves

$$p(r,t) = \frac{C}{r} e^{i(kr - \omega t)}$$

The wavelength in water at 20 kHz is about 75 millimeters

Acoustic pressure distribution

•Abaqus

•4-node linear acoustic tetrahedron•sinusoidal acoustic pressure boundary

Complicated standing wave pattern

I Ultrasonic Field

5

Hao Feng, University of Illinois at Urbana-Champaign

A. Increase cavitation activity: similar to the HTST (HIST)

B. Improve uniformity

I Ultrasound: Way to Success

A. Increase cavitation activity: similar to the HTST (HIST) B. Improve uniformity

I Ultrasound: Way to Success

A Mano-thermo-sonication: cavitation ↑ -Low pressure: 100-500kPa -Elevated temperature: 40-70C -Ultrasound

B Variable frequency technology: cavitation 1; uniformity

-multi-frequency, multimode, modulated (MMM)

$$\boldsymbol{f}_r = \frac{1}{2\pi \boldsymbol{R}_r} \left[\frac{3\gamma P_h}{\rho} \right]^{0.5}$$

Natural resonance frequency

I Power Ultrasound Research at Feng Lab

Enzyme In/activation	Microbial Inactivation	Bioseparation	Surface Decontamination	Extraction/ Bioreaction
—Orange juice	—Shigella	—Dry milling	—Fresh produce	Soybean hydration
	Listeria monocytogenes	—Wet milling	Biofilms	— Corn fiber oil
Tomato	Escherichia coli	—Starch modification		Homogeniza- tion
Hydrolysis				

Liquid Food Processing

Mano-thermo-sonication (MTS) System

Hao Feng, University of Illinois at Urbana-Champaign

MTS Inactivation of *E. coli* K12

The very first

a)

b

С

d)

Sonication

I Inactivation of *E. coli* in Apple Cider

Non-linear Inactivation Kinetics

Non-linear inactivation kinetic models

- Weibull
- Biphasic
- Log-logistic

MTS Inactivation of *E. coli* **K12**

Control

Manosonication at 40C/500 kPa for 2 min

Manosonication at 40C/500 kPa for 2 min

Thermosonication at 60C/100 kPa for 0.5 min

Manothermosonication at 61C/500 kPa for 0.25

Hao Feng, University of Illinois at Urbana-Champaign

Manothermosonication at 61C/500 kPa for 0.5

Variable Frequency Technique

Variable Frequency Technique

Field Distribution

У

 \mathbf{f}_1

 f_2

t₃

Cavitation Activity

I MMM Technique

Multi-frequency, multimode, modulated (MMM)

Multi-frequency, multimode, modulated (MMM)

Tomato enzyme inactivation with ultrasound

Extracted enzymes

Ultrasound Unit	Power density (W/cm ³)	PME Inactivation Rate Log(A/A0)/min/W	PG Inactivation Rate Log(A/A0)/min/W
Probe system	2.0	0.11	0.07
	2.7	0.06	0.06
	4.7	0.02	0.02
MMM reactor	0.1	0.32	0.11

Pectin-methylesterase (PME)

Polygalacturonase (PG)

Tomato enzyme inactivation with ultrasound

Tomato slurry

Ultrasound Unit	Power density (W/cm ³)	PME Inactivation Rate Log(A/A0)/min/W	PG Inactivation Rate Log(A/A0)/min/W
Probe system	2.0	0.02	0.02
	2.7	0.03	0.03
MMM reactor	0.1	0.17	0.10

Pectin-methylesterase (PME) Polygalacturonase (PG) Surface Decontamination/ Treatment

I Pilot Scale Ultrasonic Washer

"Continuous-Flow Bacterial Disinfection of Fruits, Vegetables, Fresh-Cut Produce and Leafy Greens Using High-Intensity Ultrasound". #61/245,382.

Acoustic Pressure Distribution

○DB: H5-2-2.odb Abaqus/Standard Version 6:7-5 \ Fri Jan 16:13/25:49 GM7-06:00 200

rep: dynamic crement 26: Step Time = 2.4488E-04 imary Var: POR eformed Var: not set Deformation Scale Factor: no

The <u>distribution and strength</u> of ultrasound across ultrasonic washing channel

Single-leaf spinach wash

Microbial reduction after a singleleaf wash in the pilot scale washer with and without ultrasound treatment, with a residence time of 60 ± 20 seconds

Batch-leaf spinach wash

Ultrasound-Assisted Produce Wash in a Pilot Scale Washer

Summary of microbial count reduction on spinach

	Single-Leaf Washing			Batcl	h-Leaf Washing		
	APC ¹	Yeast /mold	E. coli	APC	Yeast /mold	E. coli	
Chlorine	1.70	1.27	3.13	1.37	1.15	2.82	
Chlorine + Ultrasound	2.27	1.77	4.15	0.89	0.30	3.35	
Additional reduction (log)	0.57	0.50	1.02	0.52	0.15	0.53	
Additional reduction (%)	77.3	65.4	91.8	71.2	39.4	72.8	

¹ APC: Aerobic Plate Count.

Ultrasound-Assisted Produce Wash: Quality

Images of spinach leaves treated by ultrasonication for different time during storage at 1C (A) Day 0 (B) Day 7 (C) Day 14 Experiments done in a MMM reactor

Effect on Product Quality

I MTS Treated Orange Juice

Pectin-methylesterase (PME)

MTS-Treated Orange Juice

MTS-Treated Orange Juice

Pasteurization: 91°C for 13 sec MTS: 200 kPa, 70°C for 30 sec

33

MTS-Treated Orange Juice

Pasteurization: 91°C for 13 sec MTS: 200 kPa, 70°C for 30 sec

- Two key issues
 - Cavitation intensity enhancement
 - Improvement of acoustic field uniformity
- Mano-thermo-sonication (MTS)
 - Promising orange juice treatment method
 - Liquid food pasteurization: 5 log in seconds
- Variable frequency technique (MMM) is more effective

I Acknowledgment

- Dr. Scott Martin (Collaborator)
- Dr. Patcharin Raviyan (Visiting Scholar)
- Dr. Tim A. Anglea (Collaborator, Coca Cola North America)
- Dr. Zhitian Zhang (Postdoc)
- Dr. Hyoungill Lee (Postdoc)
- Dr. Bin Zhou (PhD)
- Mr. Edgar E. Ugarte (MS student); Ms. Yanfang Li (MS student)
- Ms. Mariana Pavan (MS student)

Financial Support

- USDA National Research Initiative Competitive Grants
- USDA Specific Cooperative Agreement (SCA)
- USDA 1890 Institution Capacity Building Grants
- Center for Advanced Processing and Packaging Studies
- Midwest Advanced Food Manufacturing Alliance (MAFMA)
- Illinois Council for Food and Agricultural Research
- UIUC Research Board
- Charlotte E. Biester Development Fund
- Food Technology Noord-Oost Nederland (FTNON)
- ConAgra Foods
- Center for Produce Safety

Questions?

OIS

Urbana-Champaign