Potential Applications of Nanotechnology in Food Packaging

1st International Congress on Food Technology November 3-6, 2010 Antalya

ANEMAL ÜNILIBSITESI LISON HATAY. 1992 Zehra Ayhan, Ph.D., Associate Prof Dr. Mustafa Kemal University Food Engineering Department Antakya , Hatay

Nanotechnology?

Technology involving structures with one or more dimension between 1 and 100 nanometers (1nm =10⁻⁹ m)

	Fiber form:		SWNT	MWNT	ESNF	Whisk	ters	Fibr	rs	Wire	
	Process:	CVD	Electrospinning			Spinning Drawi			Drawing	ng Extrosion	
			_	_	<u> </u>			1	_		_
		10 ^{-ta}	10-9	10-8	10-7	10-6	10-5	10-4	10-3	10-2	10-1
	Scale [m]	atomic		nane		micro		meso.		macro	
	Composition:		EELS	AES	XPS	EDX	μ-Raman μ-FTIR μ-XRD				
Testbeds	Structure		TEM	STM	AFM		SEM	Ligh	it micros	сору	
	Physical:	Physical:		Nanoindentation		MEMS test devices		cea	Conventional		

Nanotechnology in Food Sci & Tech

Nanotechnology in *food packaging* applications

- Nanocomposites
- Biodegradable nanocomposites
- Edible nanocomposites
- Active nanocomposites
- Intelligent packaging (nanosensors)

Preparation methods of polymer nanocomposites

Nanofillers

Nano-clay
Silicates (SiO₂)
CaCO₃
TiO₂

Clay nanocomposites

Nanocomposites

Improved material properties by nanotechnology

Nanoclay composites

10% clay can cut OTR as much as 75%

Biodegradable nanocomposites

Use of natural polymers is limited because of poor
barrier

- mechanical properties
- Barrier & mechanical properties of natural polymers can be improved by
 - blending with other synthetic polymers
 - chemically modifying
 - adding nanoparticles

Biodegradable nanocomposites

Edible materials

- Polysaccharides
 - Starch
 - Cellulose
 - Gams
- Proteins
 - Collagen
 - **Zein**
 - Gluten
- Lipids

Edible nanocomposites

- To improve properties of edible material
 - physical
 - mechanical
 - barrier
- Nanoparticules could be used in edible films
 as carriers of antimicrobials and other functional additives
 controlled release
 To improve food properties
 color and texture
 - food stability during transportation & storage

Edible nanocomposites

Addition of nanoclay to pectin to decrease oxygen permeability Addition of nanoclay to gelatin to improve the physical properties Adding nanoparticules to chitosan ■ to improve its stability

Active-Antimicrobial nanocomposites

- Materials including
 - Nano-silver
 - Nano-calcium oxide
 - Nano-magnezyum oxide
 - Nano-zinc oxide
 - Nano-titanium dioxide

Antimicrobial nanocomposites-Nano-silver

Strong antimicrobial activity inhibiting a range of metabolic enzyme

High thermal stability

Low volatility

Antimicrobial nanocomposites

- Ag-substituted zeolite is the most common antimicrobial agent incorporated into plastics
- Addition of silver nanoparticles into chitosan/poly (ethylene oxide) fibers had bacteriostatic effect on *E. coli*
- Nanosilver absorbs ethylene and could be used to increase shelf-life of fruits & vegetables

Nanoencapsulation

- The use of inorganic particles at nano-scale within edible capsules
 - to help the delivery of fragile micronutrients
 nutraceuticals, vitamins and flavors
 - to help controlled release of encapsulated nutrients
- Nanoencapsulated bioactive compounds in the packaging
 - to control oxidation
 - to prevent off-flavor formation and undesirable texture of food
 - to help controlled release of bioactive compounds

Nanosensors

Sensors

Environmental or package conditions

■ Temperature

■ Oxygen

Contaminants

Bacteria

■ Toxins

Intelligent packaging concepts

Time temperature indicators (TTIs)

Gas indicators

Freshness indicators

Biosensors

Fresh-Check[®]Indicator

Oxygen sensors

- Film that changes color with oxidation of food inside package
 - UV-activated colorimetric oxygen indicator which uses TiO₂ nanoparticles to photosensitize the reduction of methylene blue by triethanolamine in a polymer encapsulation medium
 - Upon UV exposure, the sensor bleaches & remains colorless, until it is exposed to oxygen when original blue color is restored
 - The rate of color recovery is proportional to the level of oxygen exposure

Ripeness sensors

Biosensors

There are two components:

Bioreceptor

 Organic or biological materials such as enzyme, antigen, hormon or nucleic acid

Determine the targeted analytes

Sensor

Converts biochemical signals into readable electrical signals

Commercial applications of nanotechnology

Barrier coatings for improved CO_2 and O_2 barrier on PET bottles, 30-60 nm thick layers, Si-based nanoparticles

Commercial applications of nanotechnology

Nanoclay with MXD6 nylon in barrier layer in PET beer bottles (Ageis OX[®])

Improved barrier to O₂ & CO₂

Comparable to glass

Polymer nanocomposite market

Projection-MM US\$

29% increase between 2005-2020

Conclusion remarks

- Nanomaterials with improved barrier properties
 - to improve food quality & safety
 - to extend shelf-life
- Nanocomposites could expand the use of edible and biodegradable films
- Nanosensors
 - to track temperature history, fruit maturity, package leakage
 - to detect food freshness & safety
 - to communicate with the consumer

Conclusion remarks

Safety/toxicology issues

Environmental impacts

Economics

Consumer acceptance

Future trend in MAP

- Adaptive MAP combined with intelligent and active packaging (How?)
 - Initial MAP application (MAP)
 - Sensor in the pack detecting gas levels (intelligent packaging)
 - Release of gas activated by the sensor to compensate for gas losses (active packaging)

THANK YOU!